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Catalytic reactions with bulk-mediated excursions: Mixing fails to restore chemical equilibrium
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In this paper we analyze the effect of the bulk-mediated excursions~BME! of reactive species on the
long-time behavior of the catalytic Langmuir-Hinshelwood-likeA1B→0 reactions in systems in which a
catalytic plane~CP! is in contact with aliquid phase, containing concentrations of reactive particles. Such
BME result from repeated particles desorption from the CP, subsequent diffusion in the liquid phase, and
eventual readsorption on the CP away from the initial detachment point. This process leads to an effective
superdiffusive transport along the CP. We consider both ‘‘batch’’ reactions, in which all particles of reactive
species were initially adsorbed onto the CP, and reactions followed by a steady inflow of particles onto the CP.
We show that for batch reactions the BME provide an effective mixing channel and here the mean-field-type
behavior emerges. On the contrary, for reaction followed by a steady inflow of particles, we observe essential
departures from the mean-field behavior and find that the mixing effect of the BME is insufficient to restore
chemical equilibrium. We show that a steady state is established ast→`, in which the limiting value of the
mean coverage of the CP depends on the particles’ diffusion coefficient in the bulk liquid phase, and that the
spatial distributions of adsorbed particles are strongly correlated. Moreover, we show that the relaxation to
such a steady state is a power-law function of time, in contrast to the exponential time dependence describing
the approach to equilibrium in perfectly stirred systems.
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in
u
ch
ca
ich
yt

cti
b

n
wi
e

e
ct
n

n
e

-

-

a

-
l
he

has

n

tial
ted,
n-

f a
en
he

na
I. INTRODUCTION

Catalytically activated reactions play an important role
various processes in chemistry, physics, and biology. S
reactions are involved, as well, in many industrial and te
nological processes, in which the design of desired chemi
requires the binding of chemically inactive molecules, wh
recombine only when some third substance—the catal
substrate—is present@1–3#.

One of the simplest examples of such catalytically a
vated reactions, which will be discussed here, is provided
the so-called Langmuir-Hinshelwood scheme@1–3#. This re-
action scheme involves two types of reactive species—aA
and aB, which are spread in a gaseous phase in contact
a solid surface; a catalyst may adsorb onto the surfac
specific adsorption sites~at constant ratesQads

(A,B)), desorb
from them back to the gas phase~at constant rateQ(A,B)),
and enter into the reaction

A1B→P, ~1!

at a finite reaction rateK, as soon as any two of unlik
species appear at neighboring adsorption sites. The rea
product P desorbs from the surface instantaneously a
leaves the system.

Within the conventional mean-field approach@1–3# ~in
which one discards the correlations in particle’s distributio
on the catalytic surface!, one gets, in particular, in the simpl
limit Qads

(A) 5Qads
(B) 5Qads, Qads

(A) @Q(A,B) and at low particle’s
densities in the gaseous phase, the following large-t asymp-
totical behavior
1063-651X/2004/69~3!/036115~10!/$22.50 69 0361
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CA~ t !5CB~ t !'AQads

K F12expS 2
t

TD G , ~2!

whereCA,B(t) denote mean surface coverage by theA andB
species at timet, respectively, whileT determines the char
acteristic time at which the valueC`5AQads/K is ap-
proached. The expression in Eq.~2! can be readily general
ized for arbitrary values ofQ(A,B), Qads

(A,B) and for arbitrary
particle’s densities in the gas phase, which will result in
somewhat more complex expressions forC` and for the
characteristic relaxation timeT. Note, however, that the long
time approach toC` will be still described by an exponentia
function of time. It is also important to emphasize that t
state approached ast→` is believed to be a truechemical
equilibrium state, in which theA and B particle’s distribu-
tions on the surface ared correlated andC` is independent
of the kinetic parameters.

Within the last two decades a considerable progress
been made in the theoretical analysis of the kinetics ofnon-
catalytic reactions@4–19#. Here, a remarkable phenomeno
of stochastic segregation has been discovered@4–19#, and
the effects of correlations and fluctuations in particle’s spa
distributions on the reaction course have been elucida
which are in a striking contrast with the conventional mea
field picture@20#. These studies resulted in the inception o
novel interdisciplinary domain on the boundary betwe
conventional chemistry and statistical physics—t
fluctuation-dominated chemical kinetics.

Following the early works on the fluctuation phenome
in chemical reactions@4–8#, Ziff and collaborators@21,22#
©2004 The American Physical Society15-1



a
.
s

ar
e
th
fir

o
io
t

hi

de
tin
,
ca
th

c

op
n
le

bu
es
u

th
n
ch

e

s
s.
y
em

ich

-

ith
b-

tact
en-
nce,
ent
orp-
g

he
ur-
rp-

ion
vel

ents
an
A

iven

l-

ce
rac-

r
ce-

nts,

ics

me.
ted
vior
q.
ly
s to

e
de
-
in

COPPEYet al. PHYSICAL REVIEW E 69, 036115 ~2004!
have questioned the predictions of the mean-field appro
in Eq. ~2! for the catalytic Langmuir-Hinshelwood scheme
Focusing on the specific example of the oxidation proces
the carbon monoxide on platinum surfaces, CO1O2→CO2
1O, Ziff et al. have observed a behavior which is by f
richer and goes far beyond than the traditional mean-fi
predictions. In particular, they have discovered that as
CO gas pressure is lowered the system undergoes a
order transition from a CO-saturated inactive phase~zero rate
of CO2 production! into a reactive steady state~nonzero rate
of CO2 production! followed by a continuous transition int
an O2-saturated inactive phase. This continuous transit
was shown to belong to the same universality class as
directed percolation and the Reggeon field theory@23#. Dif-
ferent aspects of the kinetic and equilibrium behavior in t
model have been scrutinized, revealing the importance
many-particle effects@24–42#.

An essential feature of the Langmuir-Hinshelwood mo
is that the phase confronting the catalytic surface and ac
as a reservoir of particles isgaseous. This is not the case
however, in many instances. For many important appli
tions, especially in biological and chemical systems,
catalytic substrate appears to be in contact with aliquid
phase, which comprises concentrations of reactive spe
~see Fig. 1!.

In such systems the reaction kinetic and equilibrium pr
erties may be affected by yet another important process,
included in the previous models; namely, here the partic
can perform long-range concerted excursions inside the
liquid phase. That is, as depicted in Fig. 1, the particl
adsorbed onto the surface being in contact with the b
liquid phase, can desorb, diffuse rapidly~with the diffusion
coefficient being several orders of magnitude larger than
for a surface diffusion! within the bulk phase, and then retur
to the surface at a new position far away from the deta
ment point.

Indeed, it has been shown both experimentally and th
retically ~see, e.g., Refs.@43–47#, and references therein!
that such bulk-mediated excursions~hereafter abbreviated a
the BME! can be the principal kind of motion for particle
In biological systems, such bulk-mediated excursions pla
significant role since here most of the systems include m

FIG. 1. A sketch of the reactive Langmuir-Hinshelwood-lik
system with bulk-mediated excursions. Black and white circles
noteA andB particles, respectively.~a! denotes a particle configu
ration, in which reaction takes place. Solid and dashed curved l
depict effective trajectories ofA andB particles, respectively.
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branes surrounded by fluid environments@48#; as an ex-
ample, one may consider the receptor-ligand reactions wh
take place on a membrane surface@49,50#, or the catalytic
efficiency of proteins, which cut the DNA molecules~one-
dimensional substrates! at specific sequences@51#. More gen-
erally, BME may be involved in certain ‘‘searching’’ pro
cesses@52#.

Several prominent features distinguish the situations w
a liquid and with a gas phase in contact with a solid su
strate. First, in the case when the solid surface is in con
with a liquid, the desorption of the adsorbed particles is g
erally much more pronounced than in the latter case; he
one expects that the BME process will be more frequ
here. Second, appearing in the liquid phase after the des
tion event, a desorbed particle will move diffusively, bein
multiply scattered by the solvent molecules. In view of t
geometry of the system, here the motion relative to the s
face is effectively one dimensional, such that, after deso
tion and excursions in the bulk, any particle will becertain
to return back to the surface, in contrast with the situat
with the gaseous phase, in which the particle may tra
away from the surface almost indefinitely@53#.

Repeated many times, the adsorption/desorption ev
separated by the bulk-mediated excursions will result in
effective motion of any given particle along the surface.
most striking point here is that this motion issuperdiffusive,
such that with respect to its surface displacements, any g
particle performs a ‘‘Le´vy walk’’ ~see Refs.@54,55# for
ample physical discussion!. Consequently, instead of a fami
iar Gaussian propagator, one finds@43–47# that here the dis-
tribution P(r ,t) of particles’ displacements along the surfa
is that of a two-dimensional Cauchy process and is cha
terized by a long 1/r 3 tail @56#:

P~r ,t !5
1

2p

ct

@~ct!21r 2#3/2
, ~3!

wherec5D/h, D being the particles’ diffusion coefficient in
the bulk liquid, whileh5bQads/Q stands for the ‘‘adsorp-
tion depth’’ andb is the ‘‘capture range’’—the distance ove
which a particle can directly be adsorbed in a single displa
ment step@43–47#. This implies, in turn, that due to the
BME, the distributionf(r ) of particles’ displacementsr
along the surface obeys@43–47#

f~r !5
r *

ur u3
, r .r * 5ADt* , ~4!

t* being the typical time between the reabsorption eve
t* 5D/(Qadsb)2 @43,44#.

The impact of such a peculiar transport on the kinet
and equilibrium properties of the reaction process in Eq.~1!
has not been elucidated theoretically up to the present ti

In this paper we analyze the effect of the bulk-media
excursions of the reactive species on the long-time beha
of the catalytic Langmuir-Hinshelwood-like reactions, E
~1!, in terms of a simplified model, which captures on
some basic features of the physical system, but still allow

-

es
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draw several important conclusions. First of all, we conc
trate here on a totally symmetric situation, in which the me
concentrations of the reactive particles in the liquid phase
well as their adsorption and desorption rates, are equa
each other. Further on, in this model, we focus on the eve
taking place on the catalytic surface and incorporate a se
infinite liquid phase containing concentrations of react
species in an indirect fashion. That is, we assume that c
tinuous inflow ofA and B particles, dispersed in the sem
infinite liquid phase, to the catalytic surface can be mode
as a source, which createsA and B directly on the surface
independently of each other and at a constant production
Qads. Furthermore, we suppose that the BME can be ta
into account by letting the adsorbed particles to perform r
dom, long-range hopping motion along the adsorption s
of the catalytic surface with suitably chosen hopping pro
abilities, determined by Eq.~4!. Consequently, we propos
here a two-dimensional model which includes two types
reactive species, which react upon encounters, perform lo
range ~Lévy or, more specifically, Gillis-Weiss@57,58#!
walks on the lattice, and are continuously introduced o
the lattice from a reservoir maintained at a constant chem
potential.

We hasten to remark that this model serves only as a
approximation of the real physical system and there are
eral other important processes, which may influence the
netic behavior of the reaction process in Eq.~1!. First of all,
an assumption that the ‘‘intensity’’ of particle’s creation o
the lattice is not varying in time may be inadequate. As
matter of fact, here, in view of the effectively one
dimensional geometry and diffusive transport in the liqu
phase, nonhomogenous particle density profiles in the di
tion perpendicular to the catalytic plane, characterized b
‘‘depletion’’ zone, may emerge. In consequence, the ac
intensity of particle’s production on the catalytic may va
with time. On the other hand, here we overestimate mix
effect of long-range BME, supposing that for any particle
jump on distancer along the lattice, once chosen with th
probability distribution in Eq.~4!, is executedinstanta-
neously, while in reality the transport via BME on this dis
tance takes some time, which is actually a random varia
having a broad distribution. Consequent analysis of th
effects requires much more complex approach, which is
rently being carried out@59#.

Finally, we would like to note that, apart from its re
evance to the reaction process in Eq.~1! for a catalytic sur-
face in contact with a liquid phase, our analysis sheds
light on the conceptually important question of the effect
mixing on the fluctuation-induced kinetics. As we have
ready remarked, for batchA1B→0 reactions, i.e., reaction
in which the particles of the reactive species are all initia
introduced into the system, in case of equal mean partic
densities and diffusive transport, diffusion appears to b
nonefficient mixing channel and the like species tend to s
regate spontaneously in the reaction course, which ca
deviations from the textbook kinetic behavior@4–19#. In
presence of a steady inflow of reactive species, this ef
gets dramatically increased and the deviations from the c
ventionally expected behavior@20# are getting even more
03611
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pronounced@11–13,15–17,39#. On the other hand, it ha
been shown recently in Refs.@60–62#, which analyzed kinet-
ics of the batchA1B→0 reactions, involving particles
which execute Le´vy walks, that in this case, under certa
conditions, accelerated diffusion destroys effectively t
particle-particle segregation and the mean-field behavior
vails. One may now pose quite a legitimate question whet
in situations with a steady inflow of reactive species t
Lévy walks would provide a sufficiently fast mixing chann
and overcome the strong tendency for segregation of
species in the course of the process in Eq.~1!. Our answer is
negative. We show that in the situation under study~despite
the fact that we strongly enhanced mixing supposing that
BME are executed instantaneously!, the state reached by th
process in Eq.~1! ast→` is not a true chemical equilibrium
but only a steady state. As a matter of fact, we proceed
show that coveragesC` appear to depend on the kinet
parameters, such as, e.g., particle’s diffusion coefficien
the bulk, and moreover, particle’s distributions on the latt
are very strongly~algebraically! correlated and that the long
time approach to such a steady state is essentially delaye
compared to the exponential dependence in Eq.~2!—it is
described by a power-law function of time.

The paper is structured as follows. In Sec. II we introdu
the model and basic notations. In Sec. III, focusing on
case of batch reactions, we present our analytical appro
and reproduce several known results. In Sec. IV we ana
the steady-state behavior in models with steady partic
input, which mimics Langmuir-Hinshelwood scheme wi
bulk-mediated excursions, and discuss the long-time
proach to such a steady state. Finally, we conclude in Se
with a summary of our results and discussion.

II. MODEL

Consider a two-dimensional regular lattice which
brought in contact with a reservoir of particles of tw
types—anA and aB, maintained at constant chemical pote
tials mA andmB . Here we restrict our analysis to the spec
casemA[mB . The particles of both species may adsorb on
the lattice at constant rateQads, desorb from the lattice a
rate Q, an event followed by a long-range instantaneo
jump of distancer with probability f(r ) and an immediate
readsorption. The particles then react at a constant ratK
according to the scheme in Eq.~1! as soon as any two o
unlike species appear on the same lattice site. In most of
analysis we will focus on the limitK→`, which will allow
us to emphasize the ‘‘statistical physics,’’ rather than pur
‘‘chemical’’ effects. We will discard the hard-core exclusio
between like and unlike species, assuming that the partic
coverage are sufficiently small.

Now, the long-range jumps performed by the particles
reactive species will be described here within the framew
of the Gillis-Weiss random walks@57# ~also referred to
sometimes as the Riemann walks@58#!, which represent the
lattice version of Le´vy flights @63# in the limit ur u@1. We
will use here a bit more general definition off(r ), than that
in Eq. ~4!, and suppose thatf(r ) is given by
5-3
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f~r !5
j

ur um1d
. ~5!

Note that the distribution in Eq.~5! reduces to the one in Eq
~4! in the particular case whend52 andm51. In this case,
the parameterj5r * . Note also that with this definition o
the elementary jump probability, the mean square displa
ment per stepr̄2 is infinite for all m,2, which implies that
such a random walk has an infinite variance@63,64#. The
long-tailed distribution of the jump probabilities permi
long-range jumps and generates a superdiffusive reg
Gillis-Weiss walks lead to anomalous diffusion, associated
the dynamic exponent 2/m for m,2, ur u2;t2/m, and to con-
ventional diffusion form>2, corresponding to Gaussian ra
dom walks, r̄2;t. In the case of interest here, i.e., form
51 andd52, the case which mimics the reaction in Eq.~1!
mediated by rapid excursions in the bulk, one has tha
regard to surface displacements, the particles execute ran
ballistic-type~with an infinite velocity! motion with ur u;t.

Let now CA(r ,t) and CB(r ,t) denote the local~at point
with vector r ), time-dependent coverage ofA and B par-
ticles, respectively. Evolution of these properties is gover
by the following rate equations:

ĊA~r !52KCA~r !CB~r !2
1

td
(
r8

f~r 82r !CA~r !

1
1

td
(
r8

f~r2r 8!CA~r 8!1Qads
(A) ~r ,t !, ~6!

ĊB~r !52KCA~r !CB~r !2
1

td
(
r8

f~r 82r !CB~r !

1
1

td
(
r8

f~r2r 8!CB~r 8!1Qads
(B) ~r ,t !, ~7!

where the dot denotes the time derivative, the first term
the right-hand side~rhs! describes the decrease in particle
coverage due to the reaction events, the second and the
terms describe departures and arrivals of the particles a
site r at time t due to long-range jumps, respectively. No
that the summation in the second and the third terms on
rhs of Eqs.~6! and ~7! extends over all lattice sites, whic
signifies the long-range character of particles’ migratio
while td denotes the time each particle typically spends
each lattice site between the desorption events,td5Q21. In
turn, the fourth terms on the rhs of Eqs.~6! and~7! describe
the ~random! contributions to particles’ coverage due to a
sorption of particles from the reservoir, which mimics, in o
model, the presence of particles in the bulk liquid phase
the usual fashion, we admit the following statistical prop
ties of these ‘‘source’’ terms:

^Qads
(A) ~r ,t !&5^Qads

(B) ~r ,t !&5Qads, ~8!

^Qads
(A) ~r ,t !Qads

(A) ~r1l,t1t!&5Qads
2 1Qadsd~l!d~t!,

~9!
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(B) ~r ,t !Qads

(B) ~r1l,t1t!&5Qads
2 1Qadsd~l!d~t!,

~10!

and

^Qads
(A) ~r ,t !Qads

(B) ~r1l,t1t!&50, ~11!

whered(l) is the delta function,l is the correlation param
eter, and the angle brackets^•••&, here and henceforth, de
note the volume averages. Consequently, we stipulate
creation of particles on the catalytic surface proceeds c
pletely at random~in space and in time!, and at a constan
rate, which describes arrivals of the particles, located initia
in the bulk liquid phase, at progressively longer distances
the direction perpendicular to the catalytic surface.

In what follows, we discuss the behavior of the solutio
of the dynamic rate equations, Eqs.~6! and~7!, under differ-
ent physical conditions.

III. BATCH REACTIONS

To set up the scene, we discuss first the effect of the B
on the kinetics ofA1B→0 in the ‘‘batch’’ reaction case;
namely, in situations in which all particles of the reacti
species which were dispersed initially in the bulk liqu
phase were absorbed onto the surface by some ‘‘ra
quench;’’ steady inflow of reactants by the external source
supposed to be absent here,Qads

(A) (r ,t)5Qads
(B) (r ,t)[0. We

suppose, however, that att.0 particles’ desorption from the
catalytic surface, and consequently, the BME, are allowe

In this case, we assume that the initial particles’ distrib
tions on the lattice are random Gaussian,d correlated with
mean coverageC0; that is,CA(r ,0) andCB(r ,0) obey

^CA~r ,0!&5^CB~r ,0!&5C0 , ~12!

^CA~r ,0!CA~r1l,0!&5C0
21C0d~l!, ~13!

^CB~r ,0!CB~r1l,0!&5C0
21C0d~l!, ~14!

and

^CA~r ,0!CB~r1l,0!&5C0
2 . ~15!

Now, to analyze the time evolution of the mean particl
coverage, we make use of the analytical approach first p
posed in Ref.@5# for the description of the fluctuation
induced kinetics of irreversible diffusion-limitedA1B→0
reactions. In this approach the hierarchy of the reacti
diffusion equations for the higher-order correlation functio
has been truncated at the level of third-order correlatio
Subsequent works~see, e.g., Refs.@12,17,39#! generalized
the approach to more complex reaction schemes, e.g., to
versible reactions or reactions involving interacting particl
and also showed that such a truncation is tantamount to
assumption that fluctuations in the fieldsCA,B(r ,t), which
are initially Gaussian andd correlated, remain Gaussiand
correlated at all times; this implies that the fourth-order c
relations decouple automatically into the product of the pa
wise correlations, which ensures, in turn, that the third-or
5-4
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correlations vanish. On physical grounds, it means that
ticles’ diffusion is supposed to mix effectively inhomogen
ities created locally due to reaction events, preserving
initial d-correlated particles’ distributions. On the other han
Lévy walks are known to mix the system even more effe
tively than conventional diffusion@60,62#. Consequently, we
believe that truncation of the hierarchy at the level of thi
order correlations is appropriate for the system under stu
We also note that this procedure allows us to reproduce
results obtained within a different analytical approa
@60,62#.

Following Ref. @5#, we write first the local coverage
CA,B(r ,t) in the form

CA,B~r ,t !5C~ t !1dCA,B~r ,t !, ~16!

where dCA,B(r ,t) denote local deviations from the mean
coverageC(t). By definition, ^dCA,B(r ,t)&[0.

Further on, we introduce the pair-correlation functions

GAB~l,t !5^dCA~r ,t !dCB~r1l,t !&, ~17!

GAA~l,t !5^dCA~r ,t !dCA~r1l,t !&, ~18!

and

GBB~l,t !5^dCB~r ,t !dCB~r1l,t !&, ~19!

l being the correlation parameter. Note that since we h
assumed a totally symmetric situation with regard to
adsorption/desorption rates, the correlation functio
GAA(l,t) andGBB(l,t) are obviously equal to each other
any time moment,GAA(l,t)5GBB(l,t).

Next, averaging Eqs.~6! and ~7!, we obtain

Ċ~ t !52K@C2~ t !1GAB~ t !#, ~20!

where we have used the notationGAB(t)5GAB(0,t), i.e.,
GAB(t) is the value of the particle-particle pairwise corre
tions at distancel which is equal to the reaction radiusR
~here, in the lattice version of the model, we assumed
reaction takes place when two particles of unlike spec
appear at the same site, i.e.,R[0).

Note now that Eq.~20! shows that the time evolution o
the mean coverage isostensiblycoupled to the evolution o
the pairwise correlation function. Note also that if the cor
lations are supposed to be insignificant,GAB(t)50, as one
generally takes for the mean-field approach, one obta
from Eq. ~20! that Ċ(t)52KC2(t), i.e., the conventiona
‘‘law of mass action.’’ This law yieldsC(t);1/Kt for sys-
tems of any spatial dimension and regardless of the way
the particles move in the system. On the other hand, ass
ing perfect, instantaneous reaction withK[`, one gets that

C~ t !5A2GAB~ t !, ~21!

which represents the mathematical formulation of the se
gation effect; as a matter of fact, Eq.~21! shows that the time
evolution of the observable—the mean coverage—is gui
at any timet by the time evolution of the pairwise correla
tions in the system. In case when both species move d
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sively, Eq. ~21! entails an unusual kinetic lawC(t);1/td/4

@4–8,10#, which thus predicts ford,4 aslowertime evolu-
tion of the mean coverage than that defined within the me
field approach. Note also that for finiteK Eq. ~21! holds for
times t sufficiently large such that the fluctuation-induce
law C(t);1/td/4 determines the long-time asymptotic beha
ior.

Now, to determine analytically the time evolution of th
mean coverage in our case with BME, we have to evalu
the time dependence ofGAB(t) which embodies all neces
sary information on the initial fluctuation spectra and pa
cle’s dynamics. Making use of Eqs.~6!–~20!, neglecting the
third-order correlations, and employing an evident symme
condition between theAA and BB correlation functions
@GAA(l,t)[GBB(l,t)#, we find that GAB(l,t) and
GAA(l,t) obey the following system of reaction/transpo
equations:

ĠAB~l,t !522KC~ t !@GAB~l,t !1GAA~l,t !#

1
1

td
(

y
f~y!L̂lGAB~l,t !, ~22!

and

ĠAA~l,t !522KC~ t !@GAB~l,t !1GAA~l,t !#

1
1

td
(

y
f~y!L̂lGAA~l,t !, ~23!

where

L̂lGAB~l,t !5GAB~l1y,t !1GAB~l2y,t !22GAB~l,t !.
~24!

Note that Eqs.~22! and~23! together with Eq.~20! areclosed
with respect to the mean coverage and pairwise correlati
and permits the evaluation of these quantities.

In order to solve the system of Eqs.~22!, ~23!, and~20!, it
is expedient to introduce a pair of discrete Fourier tra
forms:

F̃~k,t !5(
r

F~r ,t !ei (k•r )

and

F~r ,t !5
1

~2p!dEB
F̃~k,t !e2 i (k•r )ddk,

whereB denotes the first Brillouin zone.
Transforming Eqs.~22! and ~23!, we get

Ġ̃AB~k,t !522KC~ t !@G̃AB~k,t !1G̃AA~k,t !#

1
2

td
@f̃~k!2f̃~0!#G̃AB~k,t ! ~25!

and
5-5
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Ġ̃AA~k,t !522KC~ t !@G̃AB~k,t !1G̃AA~k,t !#

1
2

td
@f̃~k!2f̃~0!#G̃AA~k,t !, ~26!

in which equations we have made use of the condit
f̃(2k)5f̃(k), since random jump process under consid
ation is symmetric. Equations~25! and~26! are accompanied
by the initial conditions, which follow from the ones in Eq
~12!–~15!,

G̃AA~k,0!5G̃BB~k,0!5C0 , G̃AB~k,0!50. ~27!

Solution of Eqs.~25!–~27! can be readily obtained explicitly
and reads

G̃AB~k,t !52
C0

2
expF22@f̃~0!2f̃~k!#

t

td
G

3F12expS 24KE
0

t

C~ t8!dt8D G . ~28!

We focus first on the case of so-called ‘‘perfect’’ reaction
whenP is formed with probability 1 at any encounter ofA

and B and hence, whenK[`. Here,G̃AB(k,t) in Eq. ~28!
simplifies

G̃AB~k,t !52
C0

2
expF22@f̃~0!2f̃~k!#

t

td
G , ~29!

andGAB(t), which enters Eq.~21! and governs evolution o
the mean coverage, is given by

GAB~ t !5
1

~2p!dEB
G̃AB~k,t !dk. ~30!

Now, it is well known~see, e.g., Refs.@58,60#! that the lead-
ing in the small-k limit behavior of structure functionf̃(k)
5j( rur u2m2dexp(2ir•k) follows for all values ofm<2:

f̃~0!2f̃~k!;Aukum, ~31!

whereA is a constant,A5pj/G(d1m)sin(pm/2), G(x) be-
ing the Gamma function. Consequently, ford52 the long-
time behavior of the correlation functionGAB(t) obeys

GAB~ t !52
C0

2~2p!2EB
expF2

2At

td
ukumGdk

;2
C0

2~2p!
E

0

`

expF2
2At

td
kmGkdk

52amC0S jt

td
D 22/m

, ~32!

where am is a dimensionless constant,am5G(2/m)G2/m(2
1m)sin2/m(pm/2)/4111/mmp112/m. Hence, the long-time de
cay of the mean coverageC(t) is given by
03611
n
-

,

C~ t !.am
1/2C0

1/2S td

jt D
1/m

;t21/m. ~33!

Generalization of the result in Eq.~33! for arbitrary d is
straightforward and yields

C~ t !;t2d/2m, ~34!

which is precisely the result obtained for batchA1B→0
reactions involving particles performing Le´vy walks using a
different theoretical approach in Refs.@60,62#. Note also that
for m52, which corresponds to the case of a standard r
dom walk, we recover from Eq.~34! the celebrated
fluctuation-induced lawC(t);t2d/4 @4–8,10#. On the other
hand, for sufficiently small values ofm, such asm,d/2, Eq.
~33! predicts a decay which is faster than the usual me
field 1/t law. We hasten to remark that such a behavior
specific for theperfectreaction limit, whenK[`. Actually,
for systems with afinite reaction rateK, the fact thatGAB(t)
decays at afaster rate than 1/t2 means that correlations be
come unimportantand the actual long-time decay of pa
ticles’ coverages follows the standard textbook predict
1/Kt. Similar effect has been also obtained for reactions
inhomogeneous systems in Ref.@65#.

We turn now to the borderline cased52 and m51,
which is of special interest here, since it corresponds to
reactions mediated by bulk excursions. Here, Eq.~33! entails
the behaviorC(t);t21, i.e., the decay of the mean covera
mediated by the Cauchy walks proceeds exactly in the s
fashion, as the decay obtained within the conventional me
field approach@20#. This circumstance has prompted the a
thors of Refs.@60,62# to conclude that such a long-rang
transport may serve as an effective mixing channel wh
suppresses effectively the ‘‘undesired’’ segregation effect
the following section, we will examine whether this concl
sion remains valid in case of reactions followed by a stea
inflow of reactive species.

Finally, we note that this special case, in which t
‘‘mean-field,’’ purely chemical component, and the decay
correlations contribute to the overall kinetics at the sa
rate, can be viewed from a different perspective. Follow
the celebrated Collins-Kimball treatment of imperfect (K
,`) diffusion-limited reactions@66#, one may stipulate tha
here the time evolution of the mean coverage obeys ef
tively the second-order rate equation of the form

Ċ~ t !52KappC
2~ t !, ~35!

whereKapp is the apparent or effective rate constant, dep
dent both onK and on the parameters of the Cauchy proce

To determineKapp , we proceed as follows: We notic
first that for finiteK the mean coverage defined by Eq.~20!
cannot decrease faster than thet21 law expected from the
mean-field kinetics. This implies that the integral*0

t C(t8)dt8
is divergent fort→`, and hence, at sufficiently large time

expF24KE
0

t

C~ t8!dt8G!1, ~36!
5-6
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and Eq.~32! describes correctly the long-time evolution
the pairwise correlation function for finite values ofK. Now,
from Eq. ~32! we have that in this case

GAB~ t !;2
C0td

2

4p3j2
t22. ~37!

Substituting this expression into Eq.~20! and searching for
the solution of the resulting equation in the formC(t)
51/Kappt, we obtain

Kapp5
2p3j2

C0td
2K

SA11
C0td

2K2

p3j2
21D . ~38!

Recollecting next thattd5Q21 and j5r * 5ADt* , where
t* 5D/Qads

2 b2, we may rewriteKapp as

Kapp5
2p3

C0K S DQ

bQads
D 2SA11

C0b2

p3 S KQads

DQ D 2

21D ,

~39!

which relates the kinetic behavior of the batch reactions w
the BME to the physical parameters describing our mod
The expression in Eq.~39! is thus an extension of the ce
ebrated Collins and Kimball result for the apparent react
rate constant for catalytic reactions with bulk-mediated
cursions.

IV. REACTIONS WITH STEADY INFLOW OF SPECIES

Let us now consider the case when the reaction proces
Eq. ~1! is accompanied by a steady inflow of particles on
the lattice, which mimics in our model of reactions wi
bulk-mediated excursions arrivals onto the surface of p
ticles ~initially dispersed in the liquid phase! from progres-
sively larger and larger distances in the direction perpend
lar to the surface. The statistical properties of exter
sources are defined in Sec. II, Eqs.~8!–~11!.

Averaging Eqs.~6! and ~7!, we find that in this case the
time evolution of the mean coverage is governed by

Ċ~ t !52K@C~ t !21GAB~ t !#1Qads. ~40!

On the other hand, we find that the pairwise correlation fu
tion GAB(l,t) is still determined by Eq.~22!, while
GAA(l,t) obeys~see, e.g., Refs.@17,39# for the details of the
derivation in the diffusion-controlled case!

ĠAA~l,t !522KC~ t !@GAB~l,t !1GAA~l,t !#

1
1

td
(

y
f~y!L̂lGAA~l,t !1Qads. ~41!

We note, parenthetically, that discarding correlations, i
setting in Eq. ~40! formally GAB(t)[0, we recover the
mean-field result in Eq.~2!, which claims that~i! the state
approached ast→` is a true chemical equilibrium,~ii ! C`

5AQads/K, and ~iii ! C` is approached exponentially fas
On the other hand, there is an ample evidence that all th
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of these statements are wrong because of the segreg
effects in the case when reactive particles perform conv
tional diffusive motion on a two-dimensional surface in pre
ence of a steady inflow@17,39#. However, as demonstrated i
Refs. @60,62# and in Sec. III of the present paper, for bat
reactions with the BME, which ultimately result in rando
ballisticlike motion along the surface, the segregation eff
is suppressed and, apart from some renormalization of
reaction constantK, kinetic behavior follows an essentiall
mean-field-type dependenceC(t);1/t. Consequently, it is
not a priori clear whetherGAB(t) governs~or even contrib-
utes to! the long-time evolution of the system in the cased
52 andm51.

To answer this question, we turn to the time evolution
GAB(l,t), defined by Eqs.~22! and~41!. Applying the Fou-
rier transformation, we find, after elementary calculatio
that in the long-time limit@in which the asymptotic behavio
in Eq. ~31! holds# the Fourier image of the pairwise correla
tion functionGAB(l,t) reads:

G̃AB~k,t !;2
Qadstd

4Aukum
S 12expF22Aukum

t

td
G D

1
Qads

2 E
0

t

expF22Aukum
t

td

24KE
t8

t

C~ t9!dt9Gdt8. ~42!

Now, some analysis shows that due to the presence of
function 4K*

t8
t
C(t9)dt9 in the exponential, the second ter

on the rhs of Eq.~42! is negligibly small compared to the
first one. Consequently, we focus on the behavior of
dominant contribution.

Consider first the long-time evolution ofGAB(t), which
enters the rhs of Eq.~40! and hence, may affect the evolutio
of the observable—the mean coverage. Inverting the Fou
transform, we find then that in the long-time limitGAB(t)
obeys, ind dimensions and for arbitrarym,

GAB~ t !52
Qadstd

4A~2p!dEB

ddk

ukum
S 12expF22Aukum

t

td
G D

;2
Qadstd

8pA E
0

2p dk

km2d11 S 12expF22Aukum
t

td
G D .

~43!

Analyzing the behavior ofGAB(t), defined in Eq.~43!, one
notices first thatGAB(t5`)5` for m>d, which signifies
that in such situationsGAB(t) is a growing witht function
@67#. This is precisely the case discussed in Refs.@17,39#,
which concerned with the behavior of two-dimensionalA
1B→0 reactions involving diffusive species in presence
external uncorrelated input of particles. On the other ha
for m,d the stationary valueGAB(t5`) is finite.

Consequently, in the case of interest here, i.e., ford52
andm51, we find from Eq.~43! the following behavior:
5-7
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GAB~ t !;2
Qadstd

4A
1

Qadstd
2

16pA2t
, ~44!

which predicts that the stationary value ofGAB(t), i.e.,
2Qadstd/4A is approached as a power law, at a rate which
proportional to the first inverse power of time. Note also th
GAB(t),0, which means that pairwise correlation slow
down theforward reaction.

Substituting the expression in Eq.~44! into Eq. ~40! and
solving the resulting equation in the limitt→`, we find
eventually that at sufficiently long times the mean covera
obeys

C~ t !5AQads

K
1

bQads
2

2pDQF12
tchar

t
1OS 1

t2D G , ~45!

where we have made use of relationsj5r * and td5Q21,
and the characteristic relaxation timetchar is given by

tchar5
b4Qads

5

4p3Q2D3 S Qads

K
1

bQads
2

2pDQD 21

. ~46!

Now, several comments are in order. First of all, we not
that in contrast to the behavior in Eq.~2!, predicted by the
mean-field approach, the actual approach to thet5` state is
algebraic, proportional to the first inverse power of tim
This means that the long-time relaxation of the mean cov
age to itst→` value isgovernedentirely by the time evo-
lution of the pairwise correlations. Second,C` is generally
different from the mean-field value (5AQads/K) and re-
duces to it only when the particle’s diffusion coefficient
the bulk liquid phaseD→`. The fact thatC` depends on
such a ‘‘kinetic’’ parameter asD is also quite a prominen
feature - it shows unambiguously that in the reaction proc
under study there is no trueequilibrium but rather asteady
state.

To emphasize this point, we turn finally to the analysis
the particle-particle correlations on the surface in the lim
t5`, embodied in the pairwise correlation functio
GAB(r )5GAB(r ,t5`). From Eq. ~42! we find then that
these stationary correlations obey ford52 andm51

GAB~r !52
Qadstd

16p2A
E

0

2p

duE
0

2p

dk exp@ ikrcos~u!#,

~47!

which yields, in the limitur u→`, the following behavior:

GAB~r !52
bQads

2

8p3QD

1

ur u
1OS 1

ur u3/2D . ~48!
a-
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Therefore, the decay of correlations in the particles’ distrib
tions on the surface is algebraic, i.e., the particles’ distri
tions show a quasi-long-range order. As a consequence
spite the fact that the BME process effectively mixes t
system in the case of batch reactions restoring the me
field-type behavior and suppressing the segregation effe
in the case with a steady inflow of particles, which mimi
the presence of particle’s concentrations in the bulk liq
phase, the bulk-mediated excursions fail to establish che
cal equilibrium.

V. CONCLUSION

To conclude, in this paper we have analyzed the effec
the bulk-mediated excursions of reactive species on the lo
time behavior of the catalytic Langmuir-Hinshelwood-lik
reactions in systems in which a catalytic surface confron
liquid phase, containing concentrations of reactive partic
Such bulk-mediated excursions result from particle’s deso
tion from the lattice, subsequent fast diffusion in the liqu
phase, and eventual adsorption on the surface far away f
the initial detachment point. Repeated many times, s
BME yield an effectively long-range particle’s transpo
along the catalytic surface with superdiffusive related pro
erties. We have considered both batch reactions, i.e., r
tions in which all particles of reactive species were initia
adsorbed onto the surface, and reactions followed by a ste
inflow of particles onto the catalytic surface. The latter si
ations, under certain assumptions, mimic the presence of
ticle’s concentrations in the bulk liquid phase which act a
reservoir of particles. We have shown that for batch re
tions, in accord with previous analysis@60,62#, the BME
provide a very effective mixing channel which suppress
the segregation effects, such that the mean-field-type be
ior prevails. On contrary, for reactions followed by a stea
inflow of particles, we observe essential departures from
mean-field behavior and find that the mixing effect of t
BME is insufficient to restore chemical equilibrium. W
show that here a steady state is established ast→`, in which
the limiting value of mean coverage of the catalytic surfa
depends on the particles’ diffusion coefficient in the bu
liquid phase and the particles’ distributions on the lattice
strongly, algebraically correlated. Moreover, the relaxation
such a steady state is described by a power-law function
time, in contrast to the exponential time dependence desc
ing the approach to equilibrium in perfectly stirred system
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