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Catalytic reactions with bulk-mediated excursions: Mixing fails to restore chemical equilibrium
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In this paper we analyze the effect of the bulk-mediated excurdiBME) of reactive species on the
long-time behavior of the catalytic Langmuir-Hinshelwood-like- B—0 reactions in systems in which a
catalytic plane(CP) is in contact with aliquid phase, containing concentrations of reactive particles. Such
BME result from repeated particles desorption from the CP, subsequent diffusion in the liquid phase, and
eventual readsorption on the CP away from the initial detachment point. This process leads to an effective
superdiffusive transport along the CP. We consider both “batch” reactions, in which all particles of reactive
species were initially adsorbed onto the CP, and reactions followed by a steady inflow of particles onto the CP.
We show that for batch reactions the BME provide an effective mixing channel and here the mean-field-type
behavior emerges. On the contrary, for reaction followed by a steady inflow of particles, we observe essential
departures from the mean-field behavior and find that the mixing effect of the BME is insufficient to restore
chemical equilibrium. We show that a steady state is establishéd-as in which the limiting value of the
mean coverage of the CP depends on the particles’ diffusion coefficient in the bulk liquid phase, and that the
spatial distributions of adsorbed particles are strongly correlated. Moreover, we show that the relaxation to
such a steady state is a power-law function of time, in contrast to the exponential time dependence describing
the approach to equilibrium in perfectly stirred systems.
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I. INTRODUCTION Quds t
Ca(t)=Cg(t)~ \ K [1_9)(!{_?”, (2

Catalytically activated reactions play an important role in
various processes in chemistry, physics, and biology. Such
reactions are involved, as well, in many industrial and techwhereC, g(t) denote mean surface coverage by AhandB
nological processes, in which the design of desired chemicalspecies at time, respectively, whileT determines the char-
requires the binding of chemically inactive molecules, whichacteristic time at which the valu€.,.=Q,4/K is ap-
recombine only when some third substance—the catalytiproached. The expression in Eg) can be readily general-
substrate—is presefit—3]. ized for arbitrary values 0Q*'®), Q{42 and for arbitrary

One of the simplest examples of such catalytically acti-particle’s densities in the gas phase, which will result in a
vated reactions, which will be discussed here, is provided bgomewhat more complex expressions g and for the
the so-called Langmuir-Hinshelwood schefiie-3]. This re-  characteristic relaxation time Note, however, that the long-
action scheme involves two types of reactive speciesA-an time approach t€.. will be still described by an exponential
and aB, which are spread in a gaseous phase in contact witfunction of time. It is also important to emphasize that the
a solid surface; a catalyst may adsorb onto the surface atate approached as- is believed to be a truehemical
specific adsorption sitegt constant rateQ42)), desorb equilibrium state, in which theA and B particle’s distribu-
from them back to the gas phagat constant rat®*®)),  tions on the surface aré correlated andC.. is independent

and enter into the reaction of the kinetic parameters.
Within the last two decades a considerable progress has
A+B—P, (1)  been made in the theoretical analysis of the kineticeanf-

catalytic reactiong4-19. Here, a remarkable phenomenon

at a finite reaction ratd, as soon as any two of unlike of stochastic segregation has been discovégdedl 9], and
species appear at neighboring adsorption sites. The reactiohe effects of correlations and fluctuations in particle’s spatial
product P desorbs from the surface instantaneously andlistributions on the reaction course have been elucidated,
leaves the system. which are in a striking contrast with the conventional mean-

Within the conventional mean-field approafh-3] (in  field picture[20]. These studies resulted in the inception of a
which one discards the correlations in particle’s distributionsnovel interdisciplinary domain on the boundary between
on the catalytic surfageone gets, in particular, in the simple conventional chemistry and statistical physics—the
limit QY= Q.= Qags, QL>Q*B) and at low particle’s  fluctuation-dominated chemical kinetics.
densities in the gaseous phase, the following largeymp- Following the early works on the fluctuation phenomena
totical behavior in chemical reaction§4—8|, Ziff and collaborator421,22]

1063-651X/2004/6@)/03611510)/$22.50 69 036115-1 ©2004 The American Physical Society



COPPEYet al. PHYSICAL REVIEW E 69, 036115 (2004

® o branes surrounded by fluid environmen#s]; as an ex-
ample, one may consider the receptor-ligand reactions which

© O ® O take place on a membrane surfdd®,50, or the catalytic

| J
e LIQUID O efficiency of proteins, which cut the DNA moleculésne-
O O dimensional substratgat specific sequencgSl]. More gen-
o / H H H “ H ”
ST A NO e erally, BME may be involved in certain “searching” pro-
Y ‘O/\/ \‘/\o/‘ cesse$52].

Several prominent features distinguish the situations with

a liquid and with a gas phase in contact with a solid sub-
. strate. First, in the case when the solid surface is in contact
Solid Surface with a liquid, the desorption of the adsorbed particles is gen-
FIG. 1. A sketch of the reactive Langmuir-Hinshelwood-like €rally much more pronounced than in the latter case; hence,

system with bulk-mediated excursions. Black and white circles deOne expects that the BME process will be more frequent

note A and B particles, respectivelya) denotes a particle configu- here. Second, appearing in the liquid phase after the desorp-

ration, in which reaction takes place. Solid and dashed curved lineion event, a desorbed particle will move diffusively, being

depict effective trajectories ok and B particles, respectively. multiply scattered by the solvent molecules. In view of the
geometry of the system, here the motion relative to the sur-

have questioned the predictions of the mean-field approack®ce is effectively one dimensional, such that, after desorp-

in Eq. (2) for the catalytic Langmuir-Hinshelwood scheme. tion and excursions in the bulk, any particle will bertain

Focusing on the specific example of the oxidation process dP return back to the surface, in contrast with the situation

the carbon monoxide on platinum surfaces, ©0,—CO,  With the gaseous phase, in which the particle may travel

+0, Ziff etal. have observed a behavior which is by far away from the surface almost indefinitd§3]. _

ficher and goes far beyond than the traditional mean-field Repeated many times, the adsorption/desorption events

predictions. In particular, they have discovered that as théeparated by the bulk-mediated excursions will result in an

CO gas pressure is lowered the system undergoes a firgtffective motion of any given particle along the surface. A

order transition from a CO-saturated inactive phaseo rate ~ MOSt striking point here is that this motionssperdiffusive

of CO, production into a reactive steady stataonzero rate such that with respect to its surface displacements, any given

of CO, production followed by a continuous transition into Particle performs a “Ley walk” (see Refs.[54,58 for

an O-saturated inactive phase. This continuous transitiorRMPle physical discussigrConsequently, instead of a famil-

was shown to belong to the same universality class as thig" Gaussian propagator, one fifd8—47 that here the dis-

directed percolation and the Reggeon field thd@3]. Dif- f[r|but|on P(r,t) of _partlcl_es’ displacements along the_ surface

ferent aspects of the kinetic and equilibrium behavior in this'S that of a two-dimensional Cauchy process and is charac-

model have been scrutinized, revealing the importance of€fized by a long P tail [56]:

many-particle effect§24—42.

An essential feature of the Langmuir-Hinshelwood model 1 ct
is that the phase confronting the catalytic surface and acting P(r.t)= 2 [(an—Jrrz]a/z )
as a reservoir of particles gaseous This is not the case,

however, in many instances. For many important applicayherec=p/h, D being the particles’ diffusion coefficient in

tions, especially in biological and chemical systems, the,. 1,1k liquid, whileh=bQ,4/Q stands for the “adsorp-
catalytic substrate appears to be in contact withiqaid  ion gepth” andb is the “cap?u?e range”—the distance over
phase, which comprises concentrations of reactive speciggich a particle can directly be adsorbed in a single displace-
(see Fig. 1 ment step[43—47. This implies, in turn, that due to the

In such systems the reaction kinetic and equilibrium PIOPBME, the distribution 4(r) of particles’ displacements
erties may be affected by yet another important process, n%ﬁong the surface obeyd3—47]

included in the previous models; namely, here the particles

can perform long-range concerted excursions inside the bulk -
liguid phase. That is, as depicted in Fig. 1, the particles, d(r)=—, r>r*=Dt*, (4)
adsorbed onto the surface being in contact with the bulk [r]3

liquid phase, can desorb, diffuse rapidlyith the diffusion

coefficient being several orders of magnitude larger than thdt* being the typical time between the reabsorption events,
for a surface diffusionpwithin the bulk phase, and then return t* =D/(Q,4b)? [43,44.

to the surface at a new position far away from the detach- The impact of such a peculiar transport on the kinetics

ment point. and equilibrium properties of the reaction process in @y.
Indeed, it has been shown both experimentally and thedhas not been elucidated theoretically up to the present time.
retically (see, e.g., Refd43-47, and references thergin In this paper we analyze the effect of the bulk-mediated

that such bulk-mediated excursiotigereafter abbreviated as excursions of the reactive species on the long-time behavior
the BME) can be the principal kind of motion for particles. of the catalytic Langmuir-Hinshelwood-like reactions, Eq.
In biological systems, such bulk-mediated excursions play &1), in terms of a simplified model, which captures only
significant role since here most of the systems include memsome basic features of the physical system, but still allows to
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draw several important conclusions. First of all, we concenpronounced[11-13,15-17,3P On the other hand, it has
trate here on a totally symmetric situation, in which the mearbeen shown recently in Refi§60—62, which analyzed kinet-
concentrations of the reactive particles in the liquid phase, ags of the batchA+B—0 reactions, involving particles
well as their adsorption and desorption rates, are equal tahich execute Ley walks, that in this case, under certain
each other. Further on, in this model, we focus on the eventsonditions, accelerated diffusion destroys effectively the
taking place on the catalytic surface and incorporate a sempatrticle-particle segregation and the mean-field behavior pre-
infinite liquid phase containing concentrations of reactivevails. One may now pose quite a legitimate question whether
species in an indirect fashion. That is, we assume that conn situations with a steady inflow of reactive species the
tinuous inflow of A and B particles, dispersed in the semi- Lévy walks would provide a sufficiently fast mixing channel
infinite liquid phase, to the catalytic surface can be modeleénd overcome the strong tendency for segregation of like
as a source, which creatésand B directly on the surface, species in the course of the process in @g. Our answer is
independently of each other and at a constant production ratgegative. We show that in the situation under st(dgspite
Qags- Furthermore, we suppose that the BME can be taketthe fact that we strongly enhanced mixing supposing that the
into account by letting the adsorbed particles to perform ranBME are executed instantaneousline state reached by the
dom, long-range hopping motion along the adsorption siteprocess in Eq(1) ast— o is not a true chemical equilibrium

of the catalytic surface with suitably chosen hopping prob-but only a steady state. As a matter of fact, we proceed to
abilities, determined by Eq4). Consequently, we propose show that coverage€, appear to depend on the kinetic
here a two-dimensional model which includes two types ofparameters, such as, e.g., particle’s diffusion coefficient in
reactive species, which react upon encounters, perform longhe bulk, and moreover, particle’s distributions on the lattice
range (Levy or, more specifically, Gillis-Weisd57,58)  are very stronglyalgebraically correlated and that the long-
walks on the lattice, and are continuously introduced ontaime approach to such a steady state is essentially delayed, as
the lattice from a reservoir maintained at a constant chemicalompared to the exponential dependence in @j—it is
potential. described by a power-law function of time.

We hasten to remark that this model serves only as a first The paper is structured as follows. In Sec. Il we introduce
approximation of the real physical system and there are sexhe model and basic notations. In Sec. Ill, focusing on the
eral other important processes, which may influence the kicase of batch reactions, we present our analytical approach
netic behavior of the reaction process in . First of all,  and reproduce several known results. In Sec. IV we analyze
an assumption that the “intensity” of particle’s creation on the steady-state behavior in models with steady particle’s
the lattice is not varying in time may be inadequate. As anput, which mimics Langmuir-Hinshelwood scheme with
matter of fact, here, in view of the effectively one- bulk-mediated excursions, and discuss the long-time ap-
dimensional geometry and diffusive transport in the liquidproach to such a steady state. Finally, we conclude in Sec. V
phase, nonhomogenous particle density profiles in the direavith a summary of our results and discussion.
tion perpendicular to the catalytic plane, characterized by a
“depletion” zone, may emerge. In consequence, the actual
intensity of particle’s production on the catalytic may vary Il. MODEL
with time. On the other hand, here we overestimate mixing
effect of long-range BME, supposing that for any particle a Consider a two-dimensional regular lattice which is
jump on distance along the lattice, once chosen with the brought in contact with a reservoir of particles of two
probability distribution in Eq.(4), is executedinstanta- types—anrA and aB, maintained at constant chemical poten-
neously while in reality the transport via BME on this dis- tials ua andug. Here we restrict our analysis to the special
tance takes some time, which is actually a random variableéaseu,= ug . The particles of both species may adsorb onto
having a broad distribution. Consequent analysis of thesthe lattice at constant ra®,4s, desorb from the lattice at
effects requires much more complex approach, which is currate Q, an event followed by a long-range instantaneous
rently being carried out59]. jump of distance with probability ¢(r) and an immediate

Finally, we would like to note that, apart from its rel- readsorption. The particles then react at a constantKate
evance to the reaction process in Eb). for a catalytic sur- according to the scheme in Efl) as soon as any two of
face in contact with a liquid phase, our analysis sheds thenlike species appear on the same lattice site. In most of our
light on the conceptually important question of the effect ofanalysis we will focus on the limiK— 2, which will allow
mixing on the fluctuation-induced kinetics. As we have al-us to emphasize the “statistical physics,” rather than purely
ready remarked, for batch+B— 0 reactions, i.e., reactions “chemical” effects. We will discard the hard-core exclusion
in which the particles of the reactive species are all initiallybetween like and unlike species, assuming that the particles’
introduced into the system, in case of equal mean particle’soverage are sufficiently small.
densities and diffusive transport, diffusion appears to be a Now, the long-range jumps performed by the particles of
nonefficient mixing channel and the like species tend to segreactive species will be described here within the framework
regate spontaneously in the reaction course, which caused the Gillis-Weiss random walk$57] (also referred to
deviations from the textbook kinetic behavipt—19. In  sometimes as the Riemann wal&8]), which represent the
presence of a steady inflow of reactive species, this effedattice version of Ley flights [63] in the limit [r|>1. We
gets dramatically increased and the deviations from the conwill use here a bit more general definition ¢{r), than that
ventionally expected behavid20] are getting even more in Eg. (4), and suppose that(r) is given by
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¢ (QEr HQEALr +X.t+ 7)) = Q245+ Qausd(N) (7).
¢(r):|r|~+d' () (10
and
Note that the distribution in Ed5) reduces to the one in Eq.
(4) in the particular case whesh=2 andu=1. In this case, (QUr,HQE(r+\,t+7)=0, (12)

the parameteé=r*. Note also that with this definition of . _ _ .

the elementary jump probability, the mean square displacewvhered(\) is the delta function) is the correlation param-
ment per step? is infinite for all <2, which implies that ~€ter, and the angle brackss: -), here and henceforth, de-
such a random walk has an infinite variari&8,64. The Nnote the volume averages. Consequently, we stipulate that
long-tailed distribution of the jump probabilities permits création of particles on the catalytic surface proceeds com-
long-range jumps and generates a superdiffusive regimé!etely at randorr(in space and in time and at a constant
Gillis-Weiss walks lead to anomalous diffusion, associated tdate; which describes arrivals of the particles, located initially
the dynamic exponent 2/for <2 mzwtz/ﬂ and to con- in the bulk liquid phase, at progressively longer distances in

ventional diffusion foru=2, corresponding to Gaussian ran- the direction perpendlcqlar to the catalytlp surface. .
— _ _ In what follows, we discuss the behavior of the solutions
dom walks,r“~t. In the case of interest here, i.e., far

of the dynamic rate equations, E@6) and(7), under differ-
=1 andd=2, the case which mimics the reaction in Eg). y q ) 0

ent physical conditions.
mediated by rapid excursions in the bulk, one has that in Py

regard to surface displacements, the particles execute random
ballistic-type (with an infinite velocity motion with |r|~t.

Let now C,(r,t) and Cg(r,t) denote the localat point To set up the scene, we discuss first the effect of the BME
with vector r), time-dependent coverage &f and B par- on the kinetics ofA+B—0 in the “batch” reaction case;
ticles, respectively. Evolution of these properties is governeschamely, in situations in which all particles of the reactive
by the following rate equations: species which were dispersed initially in the bulk liquid

L phase were absorbed onto the surface by some “rapid

. , quench;” steady inflow of reactants by the external source is
CA(r):_KCA(r)CB(r)_T_d rE ¢’ =1)Ca(r) supposed to be absent he@{)(r,t)=QE(r,t)=0. We

L suppose, however, that &t 0 particles’ desorption from the
, , A catalytic surface, and consequently, the BME, are allowed.

* T4 ; (1 =1)Car) + QT 1), ® In this case, we assume that the initial particles’ distribu-

tions on the lattice are random Gaussiangorrelated with
mean coverag€,; that is,C(r,0) andCg(r,0) obey

Ill. BATCH REACTIONS

. 1
Ca(r)=—KCa(N)Cg(r)—— >, ¢(r'—r)Cg(r)

Td v (Ca(r,00)=(Cg(r,0))=Cy, (12)

+Ti2 d(r—r")Ca(r')+QENr,1), 7) (CA(r,0)CA(r+X,0))=C3+ Co8(N), (13
d

(Cg(r,00Cg(r+x,0)=C3+Cy8(N), (14)

where the dot denotes the time derivative, the first term on
the right-hand sidérhs) describes the decrease in particles’ 5,4
coverage due to the reaction events, the second and the third
terms describe departures and arrivals of the particles at the (CA(r,O)CB(rJr)\,O)}:Cg. (15

siter at timet due to long-range jumps, respectively. Note

that the summation in the second and the third terms on thRow, to analyze the time evolution of the mean particles’
rhs of Egs.(6) and (7) extends over all lattice sites, which coverage, we make use of the analytical approach first pro-
signifies the long-range character of particles’ migration,posed in Ref.[5] for the description of the fluctuation-
while 74 denotes the time each particle typically spends orinduced kinetics of irreversible diffusion-limited+B—0

each lattice site between the desorption events;Q™". In  reactions. In this approach the hierarchy of the reaction-
turn, the fourth terms on the rhs of Ed$) and(7) describe  diffusion equations for the higher-order correlation functions
the (random) contributions to particles’ coverage due to ad- has been truncated at the level of third-order correlations.
sorption of particles from the reservoir, which mimics, in our Subsequent workésee, e.g., Refd.12,17,39) generalized
model, the presence of particles in the bulk liquid phase. Inhe approach to more complex reaction schemes, e.g., to re-
the usual fashion, we admit the following statistical proper-versible reactions or reactions involving interacting particles,

ties of these “source” terms: and also showed that such a truncation is tantamount to the
" ) assumption that fluctuations in the fiel@s, g(r,t), which
(Qadd(r1)) =(Qaddr, 1)) = Qags, (8 are initially Gaussian and correlated, remain Gaussiah
correlated at all times; this implies that the fourth-order cor-
QU HQW(r+ N\ t+ 7)) =Q2 4+ Qagsd(N) 8(7), relations decouple automatically into the product of the pair-

9 wise correlations, which ensures, in turn, that the third-order
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correlations vanish. On physical grounds, it means that pasively, Eq.(21) entails an unusual kinetic la@(t)~ 1/£%4
ticles’ diffusion is supposed to mix effectively inhomogene-[4-8,1Q, which thus predicts fod<4 aslowertime evolu-
ities created locally due to reaction events, preserving théon of the mean coverage than that defined within the mean-
initial &-correlated particles’ distributions. On the other hand,field approach. Note also that for finike Eq. (21) holds for
Levy walks are known to mix the system even more effec-times t sufficiently large such that the fluctuation-induced
tively than conventional diffusiof60,62. Consequently, we law C(t)~ 1/t%* determines the long-time asymptotic behav-
believe that truncation of the hierarchy at the level of third-ior.

order correlations is appropriate for the system under study. Now, to determine analytically the time evolution of the
We also note that this procedure allows us to reproduce thmean coverage in our case with BME, we have to evaluate
results obtained within a different analytical approachthe time dependence @,g(t) which embodies all neces-

[60,62. sary information on the initial fluctuation spectra and parti-
Following Ref. [5], we write first the local coverage cle’s dynamics. Making use of Eq&)—(20), neglecting the
Ca(r,t) in the form third-order correlations, and employing an evident symmetry

condition between theAA and BB correlation functions
Cagl(rt)=C(t)+6Cap(r.1), (16)  [GAa(N,1)=Ggg(\,1)], we find that Gag(A,t) and
Gaa(N,t) obey the following system of reaction/transport

where 6C, g(r,t) denotelocal deviations from the mean
coverageC(t). By definition, (6Cy g(r,t))=0.
Further on, we introduce the pair-correlation functions

GAB()\,I)=<5CA(I’,I)5CB(r+)\,'[)>, (17)

equations:

Gag(\,1) = —2KC()[Gag(\,t) + Gan(A,1)]

1 X
+— 2 d(Y)L,Gas(\, 1), (22
Gaa(\,1)=(SCA(r, D) SCA(r+A,1)), (18) ra g PCre
and and
Gga(N,1) =(6Cg(r,1) SCp(r +\,1)), (19 Gaa(N,1)=—2KC(H)[Gap(\,t) +Gaa(\,1)]
\ being the correlation parameter. Note that since we have 1 .
assumed a totally symmetric situation with regard to the +— 2 BN LGanN ), (23
adsorption/desorption rates, the correlation functions d v
Gaa(N,t) andGgg(A\,t) are obviously equal to each other at where
any time momentGaa(A,t) =Ggg(A,t).
Next, averaging Eqg6) and(7), we obtain 2,Gag(\ ) =Gas(A+Y,1) + Gag(A—Y,t) — 2G g\, ).
(24)

C(t)=—K[C*(t)+Gag(t)], (20
. B . Note that Egs(22) and(23) together with Eq(20) areclosed
where we have used the nOtat'mB(t.)_GAB(oft)' 1€ with respect to the mean coverage and pairwise correlations,
Gag(t) is the value of the particle-particle pairwise correla- and permits the evaluation of these quantities.

tions at distance. which is equal to the reaction radil® In order to solve the system of Eq€2), (23), and(20), it

(here', in the lattice version of the mpdel, we as;umed t.h% expedient to introduce a pair of discrete Fourier trans-
reaction takes place when two particles of unlike specieg, o

appear at the same site, i.B=0).

Note now that Eq(20) shows that the time evolution of _ _
the mean coverage @stensiblycoupled to the evolution of F(k,t)=2 F(r,teltn
the pairwise correlation function. Note also that if the corre- '
lations are supposed to be insignificaBt,z(t) =0, as one
generally takes for the mean-field approach, one obtains

from Eq. (20) that C(t)= —KC2(t), i.e., the conventional 1
“law of mass action.” This law yieldC(t) ~1/Kt for sys- F(r,t)= 3
tems of any spatial dimension and regardless of the way how (27)

the particles move in the system. On the other hand, assum- ] o
ing perfect, instantaneous reaction with=, one gets that Wheres denotes the first Brillouin zone.

Transforming Egs(22) and (23), we get
C(t)=V—Gpg(1), (21

which represents the mathematical formulation of the segre-
gation effect; as a matter of fact, E@1) shows that the time
evolution of the observable—the mean coverage—is guided
at any timet by the time evolution of the pairwise correla-
tions in the system. In case when both species move diffuand

f F(k,t)e ikngdk,
B

Gas(k,t)=—2KC(1)[Gap(k,t) + G aa(k,t)]

2 - ~ ~
+ T_d[¢(k)_¢(o)]GAB(kat) (29
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2 - -
+ T—d[¢>(k)— #(0)]Gan(k,),

(26)
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T4 1w
C(t)zajfcgfz(a) ~t e, (33

Generalization of the result in Eq33) for arbitrary d is
straightforward and yields

in which equations we have made use of the condition

#(—k)=¢(k), since random jump process under consider- C(t)~t~%2u (34
ation is symmetric. Equatior&5) and(26) are accompanied
by the initial conditions, which follow from the ones in Egs. which is precisely the result obtained for batéh-B—0

(12—(15),

Gaa(k,00=Ggg(k,00=Cq, Gag(k,00=0.

reactions involving particles performing \g walks using a
different theoretical approach in Ref60,62. Note also that

(27)  for u=2, which corresponds to the case of a standard ran-

dom walk, we recover from EQq.34) the celebrated

Solution of Eqs(25)—(27) can be readily obtained explicitly fluctuation-induced lawC(t)~t~%* [4—8,10. On the other

and reads

_ Co -t
Gag(k,t)=— 78XF{ —2[¢(0)— ¢(k)]T—J

t
1—eXp< —4KJOC(t’)dt’)

X

hand, for sufficiently small values @f, such asu<d/2, Eq.
(33) predicts a decay which is faster than the usual mean-
field 14 law. We hasten to remark that such a behavior is
specific for theperfectreaction limit, whenK=cc. Actually,
for systems with dinite reaction rateK, the fact thatG,g(t)

(2g)  decays at dasterrate than 1# means that correlations be-

come unimportantand the actual long-time decay of par-
ticles’ coverages follows the standard textbook prediction

We focus first on the case of so-called “perfect” reactions, 1/kt. Similar effect has been also obtained for reactions in
whenP is formed with probablhty 1 at any encounter Af inhomogeneous Systems in Rms]

and B and hence, wheK=%. Here,G,g(k,t) in Eq. (28) We turn now to the borderline casg=2 and u=1,

simplifies

_ Co - Lt
Gag(k,t)=— Tex;{ —2[¢(0)— Cb(k)]T—d

which is of special interest here, since it corresponds to the
reactions mediated by bulk excursions. Here, ([88) entails

the behaviolC(t)~t ™1, i.e., the decay of the mean coverage
mediated by the Cauchy walks proceeds exactly in the same
fashion, as the decay obtained within the conventional mean-

(29

andGug(t), which enters Eq(21) and governs evolution of field approactj20]. This circumstance has prompted the au-

the mean coverage, is given by

1 (.
Gas(t) —dJBGAB(k,t)dk.

(2m)

thors of Refs.[60,62 to conclude that such a long-range
transport may serve as an effective mixing channel which
suppresses effectively the “undesired” segregation effect. In
B0 the following section, we will examine whether this conclu-
sion remains valid in case of reactions followed by a steady

Now, it is well known(see, e.g., Ref§58,60) that the lead- Inflow of reactive species.

ing in the smallk limit behavior of structure functiomb(k)
=¢3,|r| * Yexp(—ir-k) follows for all values ofu<2:

$(0)— d(k)~AlK|~,

whereA is a constantA= 7&/T°(d+ u)sin(mu/2), I'(x) be-
ing the Gamma function. Consequently, fib+2 the long-
time behavior of the correlation functidB,g(t) obeys

GaalD) Co J ‘{ 2At|k|ﬂ
AB 2(2m)2) 8 T4

Co (= 2AL,
22m ) T oy
é—t —2lu
“acdg)

where @, is a dimensionless constamw=l“(2/;L)F2’“(2 .
+ILL)SinZ/'u(7T/.L/2)/41+1/'u,uf771+2/’u' Hence, the |0ng'time de- ex[{ _4Kf C(t/)dt/
0

cay of the mean coverade(t) is given by

kdk

dk

Finally, we note that this special case, in which the
“mean-field,” purely chemical component, and the decay of
correlations contribute to the overall kinetics at the same
rate, can be viewed from a different perspective. Following
the celebrated Collins-Kimball treatment of imperfedt (
< ) diffusion-limited reaction$66]|, one may stipulate that
here the time evolution of the mean coverage obeys effec-
tively the second-order rate equation of the form

(31

C(t) = —KapCA(1), (35

whereK,,, is the apparent or effective rate constant, depen-
dent both orK and on the parameters of the Cauchy process.
To determineK,,,, we proceed as follows: We notice
first that for finiteK the mean coverage defined by ER0)
cannot decrease faster than thet law expected from the
(32 mean-field kinetics. This implies that the integfgC(t’)dt’
is divergent fort— o, and hence, at sufficiently large times

<1, (36)
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and Eq.(32) describes correctly the long-time evolution of of these statements are wrong because of the segregation
the pairwise correlation function for finite valueskf Now,  effects in the case when reactive particles perform conven-
from Eq. (32) we have that in this case tional diffusive motion on a two-dimensional surface in pres-
ence of a steady inflojd7,39. However, as demonstrated in
Corg _2 Refs.[60,62 and in Sec. Il of the present paper, for batch
Gas(t)~— 4m3e2 37 reactions with the BME, which ultimately result in random
7 ballisticlike motion along the surface, the segregation effect
Substituting this expression into E(R0) and searching for 1S suppressed and, apart from some renormalization of the
the solution of the resulting equation in the for@(t)  reaction constank, kinetic behavior follows an essentially
=1/Kp,t, We obtain mean-field-type dependencg(t)~14. Consequently, it is
not a priori clear whetheiG,g(t) governs(or even contrib-
utes tg the long-time evolution of the system in the cake
-1]. (38 =2 andu=1.
To answer this question, we turn to the time evolution of
Gag(\,t), defined by Eqs(22) and(41). Applying the Fou-
rier transformation, we find, after elementary calculations,
that in the long-time limi{in which the asymptotic behavior

273 . CoraK?
PP oK w3E2

Recollecting next thaty=Q ! and é=r* = \/Dt*, where
t* =D/Q34b?, we may rewriteK ,,, as

3 ) 5 5 in Eq. (31) holds] the Fourier image of the pairwise correla-
K :Zl<£ \/ Cob (KQads) 1 tion function Gag(\,t) reads:
app C0K ands 7T3 DQ ,
39 Gag(k,)~— Q""dST“(1—ex;{—2A|k|ML )
which relates the kinetic behavior of the batch reactions with AA k|~ Td
the BME to the physical parameters describing our model. Q ¢ t
The expression in Eq.39) is thus an extension of the cel- + adsJ ex;{ —2A[K|*—
ebrated Collins and Kimball result for the apparent reaction 2 Jo d
rate constant for catalytic reactions with bulk-mediated ex- ¢
cursions. —4K J c:(t")dt"}dt'. (42
t!

IV. REACTIONS WITH STEADY INFLOW OF SPECIES .
Now, some analysis shows that due to the presence of the

Let us now consider the case when the reaction process finction 4Kf:,C(t”)dt” in the exponential, the second term
Eq. (1) is accompanied by a steady inflow of particles onto, the rhs of Eq(42) is negligibly small compared to the

the lattice, which mimics in our model of reactions with ¢t one. Consequently, we focus on the behavior of the
bulk-mediated excursions arrivals onto the surface of par '

. o ) ; o dominant contribution.

ticles (initially dispersed in the liquid phasdrom progres- Consider first the long-time evolution @ xg(t), which

sively larger and larger distanc_es_ in the direc_tion perpendicUs niars the rhs of Eq40) and hence, may affect thé evolution

lar to the S“”’?lce- _The statistical properties of externapy yhe ghservable—the mean coverage. Inverting the Fourier

sources are defined in Sec. I, EQS)—(ll). . . transform, we find then that in the long-time lim@,g(t)
Averaging Eqs(6) and(7), we find that in this case the obeys, ind dimensions and for arbitrary

time evolution of the mean coverage is governed by ' '

. d
()=~ K[C()2+ Gap(D)]+ Quas.  (40) GAB(I):_MJ ﬂ(l—exp{—ZAlkl“L
Td
il

4AA(27)9) B |k|#
t
(1—exp[ —2Ak|*—
-
(43)

On the other hand, we find that the pairwise correlation func-

tion Gag(\,t) is still determined by EQq.(22), while Qags7q (27 dk
Gaa(\,t) obeys(see, e.g., Ref$17,39 for the details of the -y f
derivation in the diffusion-controlled case

0 kM*d+l

Gaa(h,t)=—2KC(t)[Gap(A,1) +Gaa(N 1) ] _ , o

Analyzing the behavior 0G,g(t), defined in Eq(43), one
notices first thatGag(t=«)=0 for u=d, which signifies
that in such situation&,g(t) is a growing witht function
[67]. This is precisely the case discussed in REfg,39,
We note, parenthetically, that discarding correlations, i.e.which concerned with the behavior of two-dimensioral
setting in Eq.(40) formally G,g(t)=0, we recover the +B—0 reactions involving diffusive species in presence of
mean-field result in Eq(2), which claims thatf(i) the state external uncorrelated input of particles. On the other hand,
approached as— is a true chemical equilibriunji) C..  for u<d the stationary valu& ,g(t=) is finite.

=Qaqs/K, and (iii) C, is approached exponentially fast. = Consequently, in the case of interest here, i.e.,dfer2

On the other hand, there is an ample evidence that all threend u=1, we find from Eq.(43) the following behavior:

1 "
t ; (V) LA\GaaN D)+ Qags. (4D
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Therefore, the decay of correlations in the particles’ distribu-
, (44)  tions on the surface is algebraic, i.e., the particles’ distribu-
16mA%t tions show a quasi-long-range order. As a consequence, de-
. . . . spite the fact that the BME process effectively mixes the
which predicts that the stationary value Gixg(t), i-€.,  gystem in the case of batch reactions restoring the mean-
— Qaqs7g/4A is approached as a power law, at a rate which ijg | tyne hehavior and suppressing the segregation effects,
proportional to the first inverse power of time. Note also thalj, the case with a steady inflow of particles, which mimics
Gap(t)<0, which means that pairwise correlation slowshe presence of particle’s concentrations in the bulk liquid

down theforward reaction. _ phase, the bulk-mediated excursions fail to establish chemi-
Substituting the expression in E@4) into Eq.(40) and g equilibrium.

solving the resulting equation in the limit->~, we find
eventually that at sufficiently long times the mean coverage
obeys

2
74  QadsT
Gag(t)~— Qz(j: d  QadsTa

V. CONCLUSION

To conclude, in this paper we have analyzed the effect of

Clt)= /Qads+ ngds 1— tehar +O< i) (45) the bulk-mediated excursions of reactive species on the long-
K 27DQ t 2] | time behavior of the catalytic Langmuir-Hinshelwood-like

) reactions in systems in which a catalytic surface confronts a

where we have made use of relatiofisr* and 7g=Q 1, liquid phase, containing concentrations of reactive particles.

and the characteristic relaxation timg,,, is given by Such bulk-mediated excursions result from particle’s desorp-
tion from the lattice, subsequent fast diffusion in the liquid

b“dis Qads ngds -t phase, and eventual adsorption on the surface far away from

tChar_47T?’Q2D3 K+ 27DQ (46)  the initial detachment point. Repeated many times, such

BME vyield an effectively long-range particle’s transport

Now, several comments are in order. First of all, we noticealong the catalytic surface with superdiffusive related prop-
that in contrast to the behavior in Et@), predicted by the erties. We have considered both batch reactions, i.e., reac-

mean-field approach, the actual approach tatthe state is  tions in which all particles of reactive species were initially
algebraic, proportional to the first inverse power of time.2dsorbed onto the surface, and reactions followed by a steady
This means that the long-time relaxation of the mean coverinflow of particles onto the catalytic surface. The latter situ-
age to itst—o value isgovernedentirely by the time evo- ations, under certain assumptions, mimic the presence of par-
lution of the pairwise correlations. Secor@, is generally ticle’s concentrations in the bulk liquid phase which act as a
different from the mean-field value:(\/m) and re- reservoir of particles. We have shown that for batch reac-
aas . . . .
duces to it only when the particle’s diffusion coefficient in ionS, in accord with previous analysi§0,62, the BME
the bulk liquid phaseD—~. The fact thatC.. depends on provide a very effective mixing channel wh|ph suppresses
such a “kinetic’ parameter a® is also quite a prominent fthe segre_gatlon effects, such that 'the mean-field-type behav-
feature - it shows unambiguously that in the reaction proces! Prevails. On contrary, for reactions followed by a steady

under study there is no truequilibrium but rather asteady inflow of particles, we observe essential departures from the
state mean-field behavior and find that the mixing effect of the

To emphasize this point, we turn finally to the analysis ofBME is insufficient to restor'e chem?cal equili.brium. We
the particle-particle correlations on the surface in the limitShoW that here a steady state is establishéd-as, in which
t=, embodied in the pairwise correlation function the limiting value of mean coverage of the catalytic surface
GAB(’r):GAB(r t=oc). From Eq.(42) we find then that depends on the particles’ diffusion coefficient in the bulk

these stationary correlations obey fie2 andu=1 liquid phase and the particles’ distributions on the lattice are
strongly, algebraically correlated. Moreover, the relaxation to

QageTq [27 o such a steady state is described by a power-law function of
Gag(r)=— a—SZJ’ dHJ dkexdikrcog 6)], time, in contrast to the exponential time dependence describ-
167°AJo 0 ing the approach to equilibrium in perfectly stirred systems.

(47
which yields, in the limit|r|— o, the following behavior: ACKNOWLEDGMENTS
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